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Abstract

An analytical characterization of forced convective ~ow through a channel _lled with a porous medium is presented
in this work[ Based on a two!equation model\ including transverse conduction contributions\ exact solutions are obtained
for both ~uid and solid phase temperature _elds[ The Nusselt number is also obtained in terms of the pertinent physical
parameters\ namely the Biot number for the internal heat exchange and the ratio of e}ective conductivities between the
~uid and solid phases[ It is shown that the heat transfer characteristics can be classi_ed within three regimes\ each of
which is dominated by one of three distinctive heat transfer mechanisms\ i[e[\ ~uid conduction\ solid conduction and
internal heat exchange between solid and ~uid phases[ Based on these results\ a complete electrical thermal network
representative of transport through porous media is established[ In addition\ an analytical characterization and con!
ceptual assessment of solid and ~uid temperature di}erentials is presented\ the validity of the one!equation model is
investigated and a practical criterion is suggested for channels with di}erent cross sections[ Þ 0887 Elsevier Science
Ltd[ All rights reserved[

Nomenclature

a interfacial area per a unit volume of porous media
ðm−0Ł
Ac cross!section area of the channel ðm1Ł
Ai interfacial area between solid and ~uid phases ðm1Ł
Aw outer surface area of the porous medium ðm1Ł
Bi Biot number de_ned in equation "03#
c constants de_ned in equation "39#
cP speci_c heat of the ~uid ðJ kg−0 K−0Ł
c0\ c1 constants de_ned in equations "38# and "49#
D hydraulic diameter of the channel ðmŁ
E error in the Nusselt number de_ned by equation "52#
Ea allowable error in the Nusselt number
hi interstitial heat transfer coe.cient ðW m−1 K−0Ł
hw wall heat transfer coe.cient de_ned by equation "12#
ðW m−1 K−0Ł
H characteristic length of the channel ðmŁ
kf\e} e}ective thermal conductivity of the ~uid
ðW m−0 K−0Ł

� Corresponding author[

ks\e} e}ective thermal conductivity of the solid
ðW m−0 K−0Ł
Nuw Nusselt number de_ned by equation "13#
Nuwl Nusselt number calculated from one!equation
model
P perimeter of the channel ðmŁ
q heat ~ux ðW m−1Ł
qw heat ~ux at the wall ðW m−1Ł
R thermal resistance ðm1 K W−0Ł
T temperature ðKŁ
u ~uid velocity ðm s−0Ł
u¹ nondimensional velocity de_ned in equation "6#
V volume of the porous media _lled in the channel ðm2Ł
x longitudinal coordinate ðmŁ
y transverse coordinate ðmŁ[

Greek symbols
Du nondimensional temperature di}erence\
Du � us−uf

o porosity at the wall
h nondimensional transverse coordinate de_ned in
equation "6#
g geometric constant de_ned by equation "7#
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u nondimensional temperature de_ned in equation "6#
k ratio of the e}ective ~uid conductivity to that of the
solid\ � kf\e}:ks\e}

l parameter de_ned by equation "10#
r ~uid density ðkg m−2Ł[

Subscripts
f ~uid or conduction in ~uid phase
i internal heat exchange
o overall
s solid or conduction in solid phase
ðŁ average over the channel cross section\
ðfŁ � ÐAc

f dAc:Ac[

0[ Introduction

Forced convective heat transfer in porous media has
been a subject of continuing interest during the past
decades[ This interest is due to the wide range of appli!
cability of heat transfer processes in porous media such as
solar receiver devices\ building thermal insulation\ energy
storage units\ heat pipes and catalytic reactors[ More
recently\ utilization of porous inserts has proved to be
very promising in heat transfer augmentation ð0Ð6Ł[ One
of the important porous media characteristics is rep!
resented by extensive contact surface between the solid
and ~uid which enhances the heat transfer area\ inter!
stitial heat transfer coe.cient\ and results in an increased
thermal di}usivity[

A thorough understanding of the ~uid mechanics and
heat transfer characteristics in porous media is quite com!
plicated[ In this respect\ the complex microscopic trans!
port phenomena at the pore level is important since basi!
cally they result in such macroscopic phenomena as heat
transfer augmentation and pressure loss increase[
However\ the complexity of the porous structure usually
precludes a detailed microscopic investigation of the
transport phenomena at the pore level[ Therefore\ the
general transport equations are commonly integrated
over a representative elementary volume\ which accom!
modates the ~uid and the solid phases within a porous
structure[ Though the loss of information with respect to
the microscopic transport phenomena is inevitable with
this approach\ the integrated quantities\ coupled with a
set of proper constitutive equations which represent the
e}ects of microscopic interactions on the integrated
quantities\ do provide a rigorous and e}ective basis for
analyzing the transport phenomena in porous media[

Many studies in porous media are based on the use of
Darcy ~ow model[ In these works\ various features of the
momentum transport especially in the _eld of ground!
water hydrology\ petroleum reservoir and geothermal
operations were investigated using this model ð7\ 8Ł[ In
some applications\ however\ non!Darcian e}ects are
expected to become substantially more signi_cant[ In this

regard\ Vafai and Tien ð09Ł have analyzed the e}ects of a
solid boundary and the inertial forces and have provided
insight on the applicability of the traditionally employed
Darcy|s law[

A more rigorous approach for investigating transport
through porous media is through the use of the volume!
averaging technique[ There are two approaches available
in applying the volume!averaging technique for heat
transfer investigations] one is averaging over a rep!
resentative elementary volume containing both the ~uid
and the solid phases\ and the other is averaging separately
over each of the phases\ thus resulting in a separate energy
equation for each individual phase[ These two models
are referred to as the one!equation model and the two!
equation model\ respectively[

The one!equation model is valid when the thermal
communication is e}ective enough so that the local tem!
perature di}erence is negligibly small between the ~uid
and the solid phases[ This model has been utilized in
various analysis of heat transfer in porous media ð00Ð
03Ł[ While the one!equation model facilitates the heat
transfer analysis\ in some applications the temperature
di}erences between phases cannot be neglected[ In these
situations the e}ects of the interfacial surface and the
interstitial heat transfer coe.cient\ which are related to
the internal heat exchange between the solid and ~uid
phases are major factors causing heat transfer aug!
mentation in porous media[ In such cases\ the two!equa!
tion model needs to be utilized[

One of the early investigations based on a two!equation
model was performed by Koh and Colony ð04Ł[ They
used quite a restricted model which did not account for
various important e}ects such as conduction through the
~uid phase\ dispersion and non!Darcian e}ects[ Later on\
Vafai and Sozen ð05Ł\ and Amiri and co!workers ð06\
07Ł investigated forced convective ~ow through porous
media utilizing a rigorous formulation based on the
locally volume averaged two!equation model[ Their
investigations provided detailed insight relative to
momentum transport and thermal characteristics within
porous media[ Some additional aspects of the local ther!
mal equilibrium have been presented by Whitaker ð08Ł
and Sozen and Vafai ð19Ł[

The main objective of this study is to present an ana!
lytical characterization\ and conceptual assessment of
solid and ~uid temperature di}erentials in porous media[
The applied model in this study incorporates the major
characteristics of a porous medium such as the extensive
interfacial area due to porous structures and the di}usion
enhancement due to tortuous ~ow passages[ Based on
an exact solution\ the heat transfer characteristics are
classi_ed into three regimes\ and physical characteristics
for each regime are analyzed[ The Nusselt number at the
channel wall is obtained as a function of the pertinent
parameters[ Another objective of the present work is to
ascertain and explicitly specify conditions for which the
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one!equation model would be applicable[ To this end\ the
Nusselt number obtained from the two!equation model is
compared with that from the one!equation model and a
practical\ criterion is prescribed for the validity of the
one!equation model[

1[ Problem description and modeling

The problem under investigation is related to forced
convective ~ow through a channel _lled with a porous
medium as shown in Fig[ 0[ The height of the channel is
1H and a constant heat ~ux\ qw is applied to the channel
wall[ In analyzing the problem the following assumptions
are invoked]

"0# Natural convection and radiative heat transfer are
negligible^

"1# Variation of thermophysical properties with tem!
perature is negligible^

"2# Flow and heat transfer in the channel are fully
developed[

Based on these assumptions and for a constant heat ~ux
boundary condition\ the following set of governing equa!
tions is obtained from Amiri and Vafai ð06Ł and Amiri et
al[ ð07Ł]

Fluid phase

kf\eff91
yTf¦hia"Ts−Tf# � rcPu

1Tf

1x
"0#

Solid phase

ks\eff91
yTs−hia"Ts−Tf# � 9 "1#

where kf\e} and ks\e} are the e}ective ~uid and solid thermal
conductivities\ respectively\ Tf and Ts the ~uid and solid
temperatures\ hi the interstitial heat transfer coe.cient\ u
the ~uid velocity\ r the density\ cP the speci_c heat of the
~uid\ and a is the interfacial area per unit volume of
porous medium[ The _rst term in each of the above
equations represents the net transverse conduction and
as such it can be written as

Fig[ 0[ Schematic diagram of the channel _lled with a porous medium[

91
yT �

11T

1y1
or 91

yT �
0
y

1

1y0y
1T
1y1 "2#

where the _rst representation is used for a rectangular
channel and the second representation is used for a cir!
cular cross section[ The longitudinal conduction term is
absent from the energy equations since the longitudinal
conduction contribution to the net energy transfer is neg!
ligible for the thermally fully developed region with a
constant wall heat ~ux boundary condition[

When a heat ~ux is directly applied to the outer surface
of a porous medium\ the applied heat is transferred to
the solid and ~uid parts[ As noted in Amiri et al[ ð07Ł\
the wall heat ~ux boundary condition may be viewed
in two di}erent ways[ The _rst is to assume that each
representative elementary volume "which contains both
~uid and solid phases# at the wall surface receives a pre!
scribed heat ~ux that is equal to the wall heat ~ux qw[ As
a result\ the heat will be divided between the two phases
on the basis of the physical values of their e}ective con!
ductivities and their corresponding temperature gradi!
ents[ The second approach is to assume that each of the
individual phases at the wall surface will receive an equal
amount of heat ~ux qw[

However\ a solid substrate of _nite thickness and high
thermal conductivity is usually attached to the porous
medium as shown in Fig[ 0\ and the heat ~ux is applied
to the outer wall of the substrate instead of being applied
directly to the outer surface of the porous medium[ In
this case\ the temperature at the interface between the
porous medium and the solid substrate is likely to be
uniform regardless of whether it contacts the solid or ~uid
due to the high thermal conductivity of the substrate[
Therefore\ the boundary condition when a high thermal
conductivity substrate is present can be written as

Tf =y�H 3 Ts =y�H 3 Tw "3#

where Tw implies the temperature at the interface[ This
temperature is not known a priori and must be obtained
as a part of the solution[ Consequently\ one more equa!
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tion is required to complete the wall boundary condition[
This additional equation is obtained from an energy bal!
ance at the interface as

qw � kf\eff

1Tf

1y by�H

¦ks\eff

1Ts

1y by�H

[ "4#

It should be noted that equation "4# is a similar rep!
resentation of the _rst approach discussed earlier and
cited in Amiri et al[ ð07Ł[ The boundary condition at the
center of the channel is standard and can be written as

1Tf

1y by�9

�
1Ts

1y by�H

� 9[ "5#

The governing equations can be rendered dimensionless
using the following nondimensional variables]

u � g
ks\eff "T−Tw#:H

qw

\ u¹ �
u

ðuŁ
\ h �

y
H

"6#

where ð Ł designates the average over the channel cross
section\ and g is the geometric constant de_ned by

g �
D
3H

"7#

in which D is the hydraulic diameter of the channel[ The
geometric constant\ g\ depends on the geometry of the
channel cross section[ For example\ it is 0 for a channel
composed of parallel plates and 0:1 for circular channel[

Adding equations "0# and "1#\ and integrating it over
the channel cross section and utilizing boundary
conditions\ equations "4# and "5#\ the integrated energy
balance is obtained as

rcP W u
1Tf

1x w� rcpðuŁ
1Tf

1x
�

0
gH

qw "8#

In arriving at the above equation\ it is assumed that the
~ow and heat transfer characteristics are hydro!
dynamically and thermally fully developed[ Using equa!
tions "6#Ð"8#\ the governing equations "0# and "1# and
boundary conditions given by equations "3# and "5# are
nondimensionalized as

k91
h uf¦

0
g
Bi"us−uf# � u¹ "09#

91
h us−

0
g
Bi"us−uf# � 9 "00#

us "0# � uf "0# � 9 "01#

u?s "9# � u?f "9# � 9 "02#

where the two parameters\ Bi and k\ are de_ned as

Bi �
higaH1

ks\eff

\ k �
kf\eff

ks\eff

[ "03#

The parameter Bi is an equivalent Biot number rep!
resenting the ratio of the conduction resistance in the
solid phase to the thermal resistance associated with the
internal convective heat exchange between the solid and
~uid phases[ The parameter k represents the ratio of

conduction resistances between the solid and ~uid phases[
In what follows\ the governing equations are solved

for a channel ~ow between parallel plates and the per!
tinent heat transfer characteristics are discussed[ In
addition\ the general characteristics of the heat transfer
in a channel _lled with porous media is addressed and
physically distinct regimes are identi_ed[

2[ Heat transfer in a rectangular channel

The analytical solution is based on solving the coupled
governing equations "09# and "00# along with the bound!
ary conditions given by equations "01# and "02#[ The two
coupled equations\ each of which involves two unknown
functions\ u1 and uf\ are manipulated to yield a new set of
di}erential equations\ each involving only one unknown
function\ i[e[\ either of us or uf[ The resultant equations
become

ku2s−"0¦k#Bi uýf � −Bi "04#

ku2s−"0¦k#Bi uýs � −Bi "05#

where in the above equations the Darcian ~ow model
has been utilized[ Since these equations are fourth!order
di}erential equations\ two more boundary conditions are
required for each equation in addition to the boundary
conditions given by equations "01# and "02#[ A set of
additional boundary conditions can be obtained by
evaluating the second derivatives of us and uf at the wall
by utilizing equation "01# in equations "09# and "00#[ This
results in

uýf"0# � 0:k\ uýs "0# � 9[ "06#

The second set of additional boundary conditions is
obtained by di}erentiating equations "09# and "00# with
respect to h\ evaluating them at h � 9 and utilizing equa!
tion "02#[ This results in the additional boundary con!
ditions given by

u1f "9# � u1s "9# � 9[ "07#

The temperature distribution is now obtained by solving
equations "04# and "05# along with the boundary con!
ditions given in equations "01#\ "02#\ "06#\ and "07#[ Equa!
tions "04# and "05# are _rst integrated twice using the
boundary conditions given by equations "06# and "07#[
This yields the second derivatives of temperature pro_les
uýf and uýs[ Integrating the expressions for uýf and uýs twice
more with respect to h and using equations "01# and "02#
yields the temperature pro_les for the ~uid and solid
phases[ The resultant equations are

uf �
0

0¦k $
0
1
"h1−0#−

0
Bi"0¦k# 60−

cosh"lh#
cosh"l# 7% "08#

us �
0

0¦k $
0
1

"h1−0#−
0

Bi"0¦k# 60−
cosh"lh#
cosh"l# 7% "19#

where
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l � zBi"0¦k#:k[ "10#

Therefore\ the temperature di}erence between the solid
and ~uid phases can be written as

Du � us−uf �
0

Bi"0¦k# 60−
cosh"lh#
cosh"l# 7 "11#

The Nusselt number based on the ~uid temperature is a
useful quantity that can be used for characterizing the
heat transfer results[ The wall heat transfer coe.cient is
de_ned by

hw �
qw

Tw−ðTfŁ
[ "12#

Using equations "12#\ "6# and "03#\ Nusselt numbers
based on the channel hydraulic diameter\ D\ and the
e}ective ~uid conductivity can be presented as

Nuw �
hwD
kf\eff

�
3g1

k"−ðufŁ#
[ "13#

The non!dimensionalized bulk mean temperature of the
~uid\ ðufŁ\ can be obtained from equation "08# as

ðufŁ � −
0

0¦k $
0
2

¦
0

Bi"0¦k# 60−
0
l

tanh"l#7%[ "14#

In arriving at equation "14#\ it is noted that the value of
the geometric constant\ g\ is 0 for a channel between
parallel plates[ Using equation "14# in the expression for
the Nusselt number\ Nuw\ given in equation "13# results
in

Nuw � 01
0¦k

k

0

0¦
2

Bi"0¦k# 60−
0
l

tanh"l#7
[ "15#

The above expression describes the Nusselt number in
terms of the ratio of the e}ective thermal conductivities\
k and the equivalent Biot number\ Bi\ given by equation
"03#[

3[ Discussion of results

The temperature distribution for the ~uid and solid
phases for a range of parameters\ Bi and k are shown in
Fig[ 1[ In this _gure\ the values of the key parameters\ Bi
and k are chosen such that the in~uence of each par!
ameter on the temperature pro_les can be clearly illus!
trated[ When the values for Bi and k are both small as in
Fig[ 1"a#\ the temperature di}erence between the solid
and ~uid phases is relatively large and the temperature
distribution is nearly uniform over the core part of the
channel[ This is due to the small equivalent Biot number\
Bi\ which translates into a small heat transfer coe.cient\
hi\ for the internal heat exchange and the ~uid conduction
being con_ned to a region near the wall due to a relatively
small ~uid conductivity[ As the Biot number increases\
the temperature di}erence becomes smaller while the

solid temperature hardly changes as shown in Fig[ 1"b#[
The temperature di}erence is also early uniform in this
case due to the relatively small ~uid conductivity[

For larger values of both parameters\ Bi and k\ the
temperature pro_les are shown in Fig[ 1"c#[ It is seen that
the solid temperature pro_le is similar to that shown in
Fig[ 1"b#\ though the scale is two orders of magnitude
di}erent[ It is worth noting that the ~uid temperature
pro_le is parabolic\ which implies that the in~uence of
the ~uid conduction prevails over most of the channel
cross section instead of being con_ned in a narrow region
near the wall as was the case for Bi and k values cor!
responding to Fig[ 1"a# or "b#[ This is due to the relatively
larger ~uid conductivity utilized in producing Fig[ 1"c#[
A decrease in the Biot number\ as compared to the value
used in Fig[ 1"c#\ results in an increase in the temperature
di}erential while the ~uid temperature is hardly a}ected
as can be seen in Fig[ 1"d#[ This is because the ~uid
conduction dominates the heat transfer process in the
porous medium in both cases shown in Fig[ 1"c# and "d#\
and the solid temperature is much more in~uenced by the
degree of the internal heat exchange between the ~uid
and solid phases rather than in~uenced by its own con!
ductivity[

The Nusselt number variations as a function of the key
physical parameters\ Bi and k\ is displayed in Fig[ 2[
The three!dimensional plot shown in Fig[ 2 is based on
equation "15#[ This _gure reveals the existence of three
distinct regimes\ each of which appears as a tangential
plane[ The occurrence of the three regimes is also evi!
denced in Fig[ 3\ which is basically a top view of Fig[ 2[
The heat transfer characteristics pertinent to each regime
are substantially di}erent from each other[ For
convenience\ these regimes are referred to as Regimes I\
II and III\ as shown in Fig[ 3[

The asymptotic behavior of the Nusselt number in
each regime is obtained using the following asymptotic
relation]

0
l

tanh"l# ¼ 6
0−l1:2 asl : 9

0:l as l : �
[ "16#

When l : 9\ the asymptotic behavior of the Nusselt num!
ber can be obtained from equations "15# and "16# as

Nuw : 01[ "17#

Based on the de_nition of l\ given in equation "10#\ the
condition\ l : 9 can be rewritten as

Bi ð
k

0¦k
[ "18#

Equation "18# is satis_ed within Regime 0 displayed in
Fig[ 3[ On the other hand\ when l : �\ the Nusselt
number becomes

Nuw ¼ 01
0¦k

k

0

0¦
2

Bi"0¦k#

[ "29#
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Fig[ 1[ Temperature pro_les for both ~uid and solid phases] "a# Bi � 9[4 and k � 9[90^ "b# Bi � 09 and k � 9[90^ "c# Bi � 09 and
k � 099^ "d# Bi � 9[4 and k � 099[

This equation can be subdivided into three regimes
depending on the corresponding magnitudes of the physi!
cal parameters\ Bi and k[ First\ it should be noted that
when Bi : � and k : �\ the Nusselt number converges
to a constant value\ i[e[

Nuw : 01[ "20#

This regime essentially collapses to what has already been
established as Regime I[ Next\ it should be noted that
when Bi : � and k : 9\ the Nusselt number becomes

Nuw ¼ 01
0
k

[ "21#

This constitutes the second regime "Regime II# as dis!
played in Fig[ 3[ Finally\ when Bi : 9 and k : 9\ the
Nusselt number can be approximated from equation "29#
as

Nuw ¼ 3
Bi
k

[ "22#

This constitutes the third regime "Regime III# as shown
in Fig[ 3[

4[ Physical interpretation of different regimes

In this section\ the physical aspects of the three di}er!
ent regimes and the heat transfer processes associated
with each one are examined[ It should be emphasized
that the following discussion is not con_ned to a channel
with a rectangular cross section\ rather the results cover
the general features of the heat transfer in a channel with
an arbitrary cross section _lled with a porous medium[
To this end\ the relevant heat transfer processes are illus!
trated in Fig[ 4 together with typical temperature pro_les
for the solid and ~uid phases[ For the problem descrip!
tion presented in Section 1 and shown in Fig[ 4\ the heat
~ux\ qw\ from the outer surface can be considered to be
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Fig[ 2[ Nusselt number variations as a function of the key physical parameters\ Bi and k[

Fig[ 3[ Base projection of Fig[ 2 displaying three physically
relevant regimes[

transferred into the porous medium in two ways] one is
conduction in the ~uid phase and the other is conduction
in the solid phase[ The sum of the heat transferred by the
~uid conduction\ qf\ and that by the solid conduction\ qs\
equals the total wall heat ~ux\ qw[ That is

qw � qf¦qs[ "23#

This methodology is consistent with the _rst approach
outlined by Amiri et al[ ð07Ł[ The heat transferred into
the solid phase is ultimately transferred to the ~uid phase
through the internal heat exchange process[ Accordingly\
the total internal heat exchange equals to the total heat

Fig[ 4[ Schematic of the physical aspects of the heat transfer
process in porous media[

transferred from the wall to the solid phase via solid
conduction[ That is

qi � qs[ "24#

The overall heat transfer to the ~uid phase is partly by
direct conduction into the ~uid as well as by conduction
through the solid and subsequent internal heat exchange
from the solid to the ~uid\ which is eventually convected
out of the porous medium by the ~ow[

Based on the above description and Fig[ 4\ it can be
stated that there are three distinct processes involved in
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heat transfer through a porous medium[ Each of the
cited heat transfer processes can be written in terms of a
thermal resistance and a relevant temperature potential
as

qf �
Tw−Tf "9#

Rf

\ qs �
Tw−Ts "9#

Rs

\ qi �
Ts "9#−Tf "9#

Ri

"25#

where Rf\ Rs\ and Ri are the thermal resistance related to
the ~uid conduction\ solid conduction and internal heat
exchange\ respectively[ The temperature potential is
chosen so that it will correspond to the largest tem!
perature di}erence associated with each of the heat trans!
fer processes[ The overall heat transfer can be written as

qw �
Tw−Tf "9#

Ro

"26#

where Ro represents the overall thermal resistance of the
porous medium[

The thermal resistances can be obtained by writing the
relevant heat ~uxes in an alternative form as

qf � kf\eff

1Tf

1y by�H

\ qs � ks\eff

1Ts

1y by�H

\

qi � hiAi "ðTsŁ−ðTfŁ#:Aw "27#

where Ai is the interfacial area between the solid and ~uid
phases and Aw is the surface area of the porous medium
in contact with the channel wall[ Equating the cor!
responding terms in equations "25# and "27# results in the
three pertinent thermal resistances which are involved in
transport process through porous media[ These are

Rf � cf

H
kf\eff

\ Rs � cs

H
ks\eff

\ Ri � ci

Aw

hiAi

"28#

where cs are the proportionality constants de_ned by

cf � −
uf "9#
u?f"0#

\ cs � −
us "9#
u?s"0#

\ ci �
Du"9#
ðDuŁ

[ "39#

The area ratio\ Ai:Aw\ in equation "28# represents the
surface extension due to the porous medium insertion\
and can be written for a channel with a uniform cross
section area as

Ai

Aw

� a
V
Aw

� a
Ac

P
� agH "30#

where Ac is the cross section area and P is the perimeter
of the channel[ The proportionality constants\ cs depend
on the temperature pro_les at a cross section and thus
re~ect the ~ow passage geometry which is typically either
composed of two parallel plates\ a circular pipe\ a rec!
tangular duct\ or an annulus[ For example\ for a para!
bolic temperature pro_le such as that for a ~ow between
parallel plates\ the proportionality constants are evalu!
ated as

cf �
0
1
\ cs �

0
1
\ ci �

2
1

"31#

while these constants for a circular cross section are

cf �
0
1
\ cs �

0
1
\ ci � 1[ "32#

It should be noted that each of the three thermal resist!
ances given in equation "28# is based on a di}erent set of
parameters[

the total thermal resistance of the porous medium can
be evaluated from equations "23#Ð"26# as

0
Ro

�
0
Rf

¦
0

Rs¦Ri

[ "33#

The above equation shows that the solid conduction
resistance and the internal exchange resistance are con!
nected in series resulting in Rs¦Ri as the total thermal
resistance of the solid phase\ while the ~uid conduction
resistance is connected in parallel to the thermal resist!
ance of the solid phase and the internal exchange resist!
ance to give the overall thermal resistance of the porous
media[ The electrical analogy for heat transfer in porous
media based on equation "33# is shown in Fig[ 5[ This
_gure illustrates how the three thermal resistances are
mutually connected and how the total thermal resistance
is determined from the three thermal resistances[

In a parallel electrical circuit\ most of the electric cur!
rent ~ows through the smallest resistance among otheres\
and thus the circuit is mainly governed by the smallest
resistance[ In the same manner the overall heat transfer in
porous media will be dominated by the thermal resistance
which a}ects the overall thermal resistance the most[
Since each of the three thermal resistances is physically
distinct\ the resulting heat transfer process will display
distinctive characteristics depending on the dominating
thermal resistance[ Consequently\ the existence of three
distinguished heat transfer regimes can be expected based
on physical mechanisms displayed in Figs 4 and 5[ Fur!
thermore\ an important one to one connection will be
established between the thermal resistance network and
the three regime map shown in Fig[ 3[

The three regimes shown in Fig[ 3 are re!established
through a comparative analysis of the three resistances
shown in Fig[ 5[ Speci_cally\ the three regimes shown in
Fig[ 3 are recon_rmed as

Regime I] when Rf is dominant where Rf ð Ri or Rf ð Rs

Regime II] when Rs is dominant where Rs Ł Ri and
Rs ð Rf

Regime III] when Ri is dominant where Ri Ł Rs and
Ri ð Rf[

These three regimes are identi_ed by the three boundaries
separating each of the regimes\ i[e[\ Rf ¼ Rs\ Rs ¼ Ri\ and
Ri ¼ Rf[ Each of three boundaries can be written in terms
of the parameters\ Bi and k using equations "28#\ "39#\
"30#\ and "03#]

Boundary A "between Regime I and Regime II#]

Rf ¼ Rs : k ¼
uf "9#
u?f "0#

u?s "0#
us "9#

[ "34#

Boundary B "between Regime II and Regime III#]



D[!Y[ Lee\ K[ Vafai:Int[ J[ Heat Mass Transfer 31 "0888# 312Ð324 320

Fig[ 5[ Electrical analogy for the heat transfer process in porous media[

Rs ¼ Ri : Bi ¼
−Du"9#
ðDuŁ

u?s "0#
us "9#

[ "35#

Boundary C "between Regime III and Regime I#]

Ri ¼ Rf :
Bi
k

¼ −
Du"9#
ðDuŁ

u?f "0#
uf "9#

[ "36#

At boundary A\ between Regime I and Regime II\ the
~uid and the solid conduction resistances are of the same
order of magnitude\ and the internal exchange resistance
is the smallest among the three thermal resistances[ Due
to the small internal exchange resistance\ the temperature
di}erence between the ~uid and solid phase becomes
negligible\ and thus the temperature pro_les for the ~uid
and solid become similar to each other[ Consequently\
based on equation "34#\ this boundary can be char!
acterized by

k ¼ 0[ "37#

The boundary between Regimes II and III is char!
acterized by a solid conduction resistance which is of
the same order of magnitude as the internal exchange
resistance\ while the ~uid conduction resistance is the
largest among the three resistances[ Due to the large
conduction resistance in the ~uid phase\ the energy from
the wall is hardly transferred directly into the ~uid[ There!
fore\ the ~uid conduction contribution in equation "09#
is negligible causing the temperature di}erence between
the ~uid and solid to become nearly uniform over the
channel cross section[ As a result\ the solid temperature
pro_le can be readily obtained from equation "00# for a
_xed and known temperature di}erence\ which can
directly be evaluated from equation "09#[ Thus\ based on
equation "35#\ the boundary B\ between Regimes II and
III can be described by

Bi ¼ −
u?s "0#
us "9#

0 c0[ "38#

At boundary C\ the internal resistance and the ~uid con!
duction resistance are similar in magnitude and the solid
conduction resistance is the smallest[ It should be noted

that even though the solid conduction resistance can be
signi_cant over portions of Regime I\ it is quite small at
boundary C which is the portion in common between
Regimes III and I[ Hence the solid temperature becomes
quite close to the wall temperature and thus the tem!
perature di}erence pro_le\ Du\ is nearly the same as that
of the ~uid temperature\ uf[ Consequently based on equa!
tion "36#\ boundary C can be rewritten as

Bi
k

¼ −
u?f "0#
ðufŁ

0 c1[ "49#

The ~uid temperature pro_le at this boundary can be
obtained from equation "09# by letting us equal zero[

In equations "38# and "49#\ the constants\ c0 and c1\ are
determined from the temperature pro_les[ Each of these
constants is of the order of magnitude of one at each
boundary\ since either the solid conduction or the ~uid
conduction prevails across the cross sectional area of the
channel[ In particular\ for a uniform ~ow in a channel
between parallel plates\ the constants are evaluated as

c0 � 1\ c1 � 2[56 "40#

while these constants for a circular cross section are

c0 � 1\ c1 � 4[42[ "41#

Comparing the boundaries given by equations "37#Ð"40#
with those shown in Fig[ 3\ reveals that they are in exact
agreement\ and thus the Regimes I\ II\ and III in Fig[ 3
are the same as those presented in connection with Fig[
5[ Therefore\ the three regimes shown in Fig[ 3 are formed
due to the existence of three distinct thermal resistances\
and each regime shown in Fig[ 3 is dominated by one of
the three thermal resistances[ Based on this observation\
the heat transfer process within each regime can be
viewed in terms of a dominating thermal resistance[

5[ Heat transfer characterization within each regime

The original governing equations can be reduced to
simpler forms by considering the magnitudes of the par!
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Table 0[
Heat transfer characteristics within each regime

Dominant Range Reduced governing Nusselt number\ Nuw Heat transfer
thermal ðobtained from equations ðobtained from coe.cient\
resistance equations "37#Ð"49#Ł ðobtained from equation "44#Ł hw � Nuwkf\e}:D

equations "09# ðobtained from
and "00#Ł equations "44#\

"7# and "03#Ł

Regime I Rf kŁ0 or Bi:kðc1$ k91
huf¼u¹

−3g
u?f "0#
ðufŁ

−
u?f "0#
ðufŁ

kf\eff

H91
hus−Bius�−Biuf

Regime II Rs BiŁc0� and kð0 uf¼us−u¹:Bi¼us
−3g

u?s "0#
ðusŁ

0
k

−
u?s "0#
ðusŁ

ks\eff

H91
hus¼u¹

Regime III Ri Biðc0 and Bi:kŁc1 uf¼us−u¹:Bi¼−u¹:Bi
3g1 Bi

k
gaHhi91

hus¼u¹

� c0 and c1 are constants which depend on the geometry of the channel cross!section[

ameters\ Bi and k which in turn speci_es the dominant
thermal resistance within each regime[ These equations
and the relevant resistances which are summarized in
Table 0 provide a clear\ physical view of the heat transfer
process in porous media[ The range within each regime
is obtained by observing the boundaries A\ B\ C given in
equations "34#Ð"36# and equations "37#Ð"49#[

For example\ when k Ł 0 in Regime I\ the governing
equation obtained by summing equations "09# and "00#
is reduced to

k91
h uf ¼ u¹ "42#

because k is much larger than unity in this regime[ On
the other hand\ if Bi:k ð c1 in Regime I\ the governing
equation "09# is directly reduced to equation "42#[ This
reduced governing equation implies that the ~uid con!
duction is in balance with convection\ while the solid
conduction contribution is negligible compared to that
from ~uid conduction[

However\ the solid conduction term is comparable to
the convection term in Regimes II and III since the solid
conductivity is much larger than the ~uid conductivity in
these regimes[ It should be noted that the ~uid conduction
still dominates in the regime\ Bi:k ð c1 and k ð 0\ which
belongs to Regime I\ even though the solid conductivity
is much larger than that of the ~uid[ This is because the
heat from the wall can hardly transfer through the solid
phase in spite of the large solid conductivity due to the
large internal heat exchange resistance between the solid
and ~uid phases[ Consequently\ most of the heat ~ows
directly into the ~uid and thus the ~uid conductivity
dominates the overall heat transfer in this regime[

The Nusselt number can be written in terms of the
overall thermal resistance using equations "12#\ "13#\ and
"26#\ as

Nuw �
uf "9#
ðufŁ

D:kf\eff

Ro

[ "43#

Since in each regime\ the overall thermal resistance\ Ro\
can be approximated as Rf\ Rs\ or Ri\ the Nusselt number
in each regime can be written by using equations "28#Ð
"30# and equation "7# as

Regime I Nuw ¼ −3g
u?f "0#
ðufŁ

Regime II Nuw ¼ −3g
uf "9#
ðufŁ

u?s "0#
us "9#

0
k

Regime III Nuw ¼ 3g
uf "9#
ðufŁ

ðDuŁ
Du"9#

Bi
k

[ "44#

The Nusselt numbers given by equation "44# can be fur!
ther simpli_ed by observing the reduced governing equa!
tions given in Table 0 and assessing the ~uid and solid
temperature pro_les based on the reduced governing
equations given in the same table[ Speci_cally\ the Nuw

in Regime II is reduced by noting from the reduced form
of equations "09# and "00# given in Table 0 that uf ¼ us[
Likewise\ Nuw in Regime III is reduced by observing from
the reduced form of equations "09# and "00# that both uf

and "us−uf# are essentially constants across the ~ow cross
section[ The resulting Nusselt number in each regime is
summarized in Table 0 together with the pertinent wall
heat transfer coe.cients\ hw[ The Nusselt numbers in
Regimes I and II are shown to be dependent on the
temperature pro_les of the ~uid and solid phases\ re!
spectively[ This is because either the ~uid or the solid
conduction dominates the overall heat transfer in each
regime[ On the other hand\ in the third regime "Regime
III#\ heat transfer is dominated by the internal exchange
resistance and as such\ the Nusselt number is not in~u!
enced by either the ~uid or the solid temperature pro_les[
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For the case of a uniform ~ow between parallel plates\
the Nusselt number in each regime is evaluated from the
reduced governing equations given in Table 0\ as

Nuw ¼ 8
01 in Regime I

01:k in Regime II

3B:k in Regime III

[ "45#

It should be noted that these values are the same as those
from the analytical solution given in equations "17#\ "21#
and "22#[

It is worth noting the magnitude of the heat transfer
coe.cient for Regime III[ As given in Table 0\ the ratio
of the wall heat transfer coe.cient\ hw\ to the internal
heat exchange coe.cient\ hi\ is

hw

hi

¼ gaH[ "46#

Using equation "30#\ equation "46# can be rewritten as

hw

hi

¼
Ai

Aw

[ "47#

This equation clearly shows that the heat transfer
enhancement due to the presence of a porous medium is
directly proportional to the ratio of the surface enhance!
ment "interfacial area between solid and ~uid phases# so
that of the outer surface area of the porous medium[
Essentially\ this feature in Regime III is the result of an
internal exchange resistance which is larger than the solid
conduction resistance as well as a temperature di}erence
between the wall and solid phase which is negligibly small
compared to that between the solid and ~uid phases[

6[ Criterion for validity of the one!equation model

In this part\ the validity of the one!equation model is
investigated by comparing the Nusselt number obtained
from the one!equation model with that previously
obtained from the two!equation model[ In the one!equa!
tion model\ the governing equation can be obtained from
equations "09# and "00# by adding them and assuming
the temperatures of the ~uid and solid phases are the
same[ This leads to

"k¦0#91
h u � u¹[ "48#

The relevant boundary conditions are

u?"9# � 9 and u"0# � 9[ "59#

The temperature pro_le for a uniform ~ow in a channel
between parallel plates can be readily obtained as

u �
0

1"0¦k#
"h1−0#[ "50#

With this temperature pro_le\ the Nusselt number is
obtained from equation "13# as

Nuw0 � 01
0¦k

k
[ "51#

where the subscript {0| in Nuw0 emphasizes the point
regarding the use of the one!equation model in obtaining
the Nusselt number given by equation "51#[ The di}er!
ence between the one!equation and two!equation model
Nusselt numbers can now be evaluated through the use
of equations "15# and "51#[ This results in

E 0
Nuw0−Nuw

Nuw

�
2

Bi"0¦k# 60−
0
l

tanh"l#7[ "52#

Figure 6 shows the contour error map in obtaining the
Nusselt number based on the one!equation model as
given by the equation "52#[ The error in using the one!
equation model is found to increase as both parameters\
Bi and k become smaller\ while the error in using the one!
equation model decreases as either one of the parameters
becomes larger[ Since the temperature di}erence between
the solid and ~uid phases becomes smaller with an
increase in the Biot number\ it can be seen why the error
in using the one!equation model decreases when the Biot
number increases[

It is important to note that the result from the one!
equation model is valid when the conductivity ratio\ k\ is
large regardless of the magnitude of the Biot number as
seen in Fig[ 6[ This is due to a dominant ~uid conduction
relative to a negligible solid phase conduction in porous
media when the conductivity ratio is large[ Subsequently\
even though the temperature di}erence is not small
between the solid and ~uid phases\ the heat transfer pro!
cess can be accurately presented by a one!equation
model[

While the two!equation model is always more accurate
than the one!equation model\ in general\ the two!equa!
tion model is more involved due to the inherent coupling
of the solid and ~uid phases[ Analyzing the limiting
behavior of equation "52# when k : 9 and when Bi : 9
with the use of equation "16#\ and referring to Fig[ 6\ the

Fig[ 6[ Error map for the Nusselt number based on using the
one!equation model[
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criterion for the validity of the one!equation model can
be written as

k¦
Bi
3

×
0
Ea

[ "53#

for a channel between parallel plates\ where Ea is the
allowable error in using the one!equation model[ For a
circular cross section this criterion is given as

k¦
Bi
3

×
0
Ea

[ "54#

Speci_cally\ this criterion represents the region within
which the error in the Nusselt number based on the one!
equation model is less than or equal to Eu[ Unless this
criterion within the region of interest is satis_ed\ the two!
equation model needs to be applied to stay within an
error bound of Eu[

7[ Conclusions

A theoretical investigation of the heat transfer charac!
teristics for the forced convective ~ow through a channel
_lled with porous material is presented in this work[ To
this end\ exact solutions are obtained for both the ~uid
and solid temperature _elds based on the two!equation
model including transverse conduction contributions[
Utilizing the exact solution\ the Nusselt number is
obtained as a function of two pertinent parameters\ i[e[\
the Biot number\ Bi\ and the ratio of e}ective con!
ductivities between the ~uid and solid phases\ k[ It is
shown that the heat transfer characteristics in porous
media can be classi_ed into three regimes\ each of which
is dominated by one of three distinctive heat transfer
mechanisms\ i[e[\ ~uid conduction\ solid conduction\ and
internal heat exchange between the ~uid and solid phases[
These three distinct regimes represent the physical aspects
of heat transfer in porous media and are characterized as
follows]

Regime I "k Ł 0 or Bi:k ð c1#*Fluid conduction domi!
nates the heat transfer process in porous media while the
solid phase does not contribute directly to the overall
heat transfer[ The wall heat transfer coe.cient depends
on the e}ective ~uid thermal conductivity[
Regime II "Bi Ł c0 and k ð 0#*Solid conduction domi!
nates the heat transfer and the temperature di}erence
between phases is negligible due to the relatively large
interstitial heat transfer coe.cient[ The e}ective solid
thermal conductivity determines the wall heat transfer
coe.cient[
Regime III "Bi ð c0 and Bi:k Ł c1#*Internal heat exch!
ange dominates the heat transfer[ The solid temperature
is almost the same as the wall temperature due to the
relatively large solid conductivity and thus the porous
structure works as an ideal _n system[ The wall heat

transfer coe.cient is determined by the interstitial heat
transfer coe.cient and the speci_c interfacial area[

In the cited classi_cations\ c0 and c1 are constants of the
order of 0 which depend on the channel cross sectional
geometry[ The validity of the one!equation model is also
investigated by comparing the Nusselt number obtained
from the one!equation model with that from the two!
equation model[ The error in using the one!equation
model is found to increase as both of the parameters\ Bi
and k become smaller\ thus causing the one!equation
model invalid[
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